

Secure Software Engineering
Best Practices

Randy Heiland and Susan Sons
CACR, Indiana University

https://cacr.iu.edu/

NSF Cybersecurity Summit
Aug 16, 2016

trustedci.org

Center for Trustworthy
Scientific Cyberinfrastructure

The mission of CTSC is to provide the NSF
community with a coherent understanding of
cybersecurity, its importance to computational
science, and the resources to achieve and maintain
an appropriate cybersecurity program.

2

trustedci.org

Audience Participation

3

● Encourage questions, comments, and
interaction during the presentation, esp.
○ personal/project-specific stories, both

positive and not-so-positive
○ experience with tools

● Welcome constructive feedback

Challenges for this presentation

4

● Not knowing audience in advance
● Right level of detail:
○ “developers need to be aware of secure

coding techniques and tools” (too high)
vs.
○ “if you’re writing a web application using

javascript, you need to …” (too low)

Audience?

5

Not mutually exclusive, obviously.

● software developers?
● scientists?
● students?
● managers?
● system admins?
● analysts?

Background and Motivation

6

NSF “CI Framework for 21st century” (CIF21)

7

Software is fundamentally computer code. It can be
delivered to end users in multiple formats, ranging from an
archive that a user downloads and builds to an executable
or a service running on a remote system to which a user
connects. Especially at large scale, software is generally
difficult to design, implement and then maintain, and the
software needed by the science, engineering, and
education communities is particularly complex. Software
must be reliable, robust, and secure; able to produce
trustable and reproducible scientific results; …

http://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf

http://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf
http://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf

Software and the NSF

8

● Software (including services) essential for
the bulk of science
○ About half the papers in recent issues of Science were software-intensive projects
○ Research becoming dependent upon advances in software

○ Significant software development being conducted across NSF: NEON, OOI, NEES, NCN, iPlant, etc

○ Wide range of software types: system, applications, modeling, gateways, analysis, algorithms,

middleware, libraries

● Software is not a one-time effort, it must be sustained
○ Development, production, and maintenance are people intensive

○ Software life-times are long vs hardware

○ Software has under-appreciated value

http://www.slideshare.net/danielskatz/metrics-citation-for-software-and-data

CyVerse

9

“It’s clear that open and reproducible science and
engineering will need an integrated approach to
code and data management, as both are complex
and evolving.”

LeVeque, Randall J., Ian M. Mitchell, and Victoria
Stodden. 2012. “Reproducible Research for Scientific
Computing: Tools and Strategies for Changing the
Culture.” Computing in Science and Engineering 14
(4).

Further reading

● Howison, J., E. Deelman, M. J. McLennan, R. Ferreira da Silva, and J. D. Herbsleb.
2015. “Understanding the Scientific Software Ecosystem and Its Impact: Current
and Future Measures.” Research Evaluation, July. doi:10.1093/reseval/rvv014

10

http://rev.oxfordjournals.org/content/early/2015/07/26/reseval.rvv014

Secure Software Engineering

11

Secure SE vs. SE

12

How is Secure Software Engineering different from
Software Engineering?

From CIF21, why not also have:

{Reliable, Robust, Secure, Trustable, Reproducible} SE?

Secure SE vs. SE

13

How is Secure Software Engineering different from
Software Engineering?

From CIF21, why not also have:

{Reliable, Robust, Secure, Trustable, Reproducible} SE ?

→ SE should be comprehensive.

Introduction

14

Software engineering (SE) is concerned with
developing and maintaining software systems
that behave reliably and efficiently, are
affordable to develop and maintain, and satisfy
all the requirements that customers have defined
for them.

http://computingcareers.acm.org/?page_id=12

http://computingcareers.acm.org/?page_id=12
http://computingcareers.acm.org/?page_id=12

Introduction

15

Software engineering (SE) is concerned with
developing and maintaining software systems
that behave reliably and efficiently, are
affordable to develop and maintain, and satisfy
all the requirements that customers have defined
for them. → security

16

Software engineering (SE) is about

problem modeling and analysis, software design,
software verification and validation, software quality,
software process, software management, etc.

http://computingcareers.acm.org/?page_id=12

http://computingcareers.acm.org/?page_id=12
http://computingcareers.acm.org/?page_id=12

Motivation

17

Why do we care about secure software?
● prevent loss of data
● prevent premature leaks of data
● prevent downtime of resources

 (CIA: Confidentiality, Integrity, Availability)

→ better science, better public trust

SE is language agnostic; but tools may not be

18

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

http://spectrum.ieee.org/ns/IEEE_TPL_2016/methods.html (12 metrics; 10 sources)
Cf. http://www.tiobe.com/tiobe-index/

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://spectrum.ieee.org/ns/IEEE_TPL_2016/methods.html
http://spectrum.ieee.org/ns/IEEE_TPL_2016/methods.html
http://www.tiobe.com/tiobe-index/

Community Engineering

19

Community Engineering - definition

20

Community Engineering is the continuing process of
establishing expectations and social environment that
support, rather than hinder, effective, adaptive, and
ethical engineering practice within a team or
community.

21

No one develops software in a vacuum. Our tools,
our expectations, our relationships with teammates
and upstream developers, and the overall
environments in which we operate have huge
cumulative impact on our behavior and the quality of
our work.

22

You can’t change people…
...but you can change their environment.

23

Community Engineering Overview

● Split agency is NEVER acceptable.
● Make the right thing as easy to do as possible.
● Communication should be cheap, frequent, and

clear.
● Look at your incentives and disincentives like a

gamer: if you minmax hard, what do you get?
● No environment makes every human happy. Think

hard about who you want to attract and keep, and
what is a good culture for those people.

Split Agency

“Split agency” is the condition where the person who
controls how something is done and with what
resources is not the person who is responsible for the
outcome.

Split agency kills morale, creates perverse incentives,
and lowers quality of work.

Example: Project lead budgets zero developer time for
documentation, then holds developers responsible for
lack of documentation.24

Make doing the right thing easier.

In an ideal world, developers do the right thing no
matter what stands in their way.

In the real world, where we have schedules and limited
skill sets and interpersonal conflicts, most developers
will do as good a thing as seems plausible.

This means that, with better tools and processes, you
can get better work out of most people...

25

Make doing the right thing easier. (cont.)

Generally, look ways to automate away repetitive or
time-consuming tasks, and reduce developer friction.
Examples:

● Set up a pre-receive hook to reject commits that fail
tests or don’t meet style standards so developers fix
small problems on code that’s fresh in their minds,
not big ones on code they have to re-analyze.

● Migrate away from outdated tools like CVS and
SVN… the time invested learning and moving to git
or hg is quickly paid back in saved effort/frustration.

26

Communication should be...

Cheap: developers should be focused on development;
communication should be fast, easy, and not take
much time and attention.

Frequent: a quick question or clarification early will
save a lot of time over only addressing things when
they’ve become problems.

Clear: precise, concrete communication will get you
furthest with most engineers and cause the least stress

27

What does your project incentivize?

“minmaxing” is a gamer term that means to carefully
optimize a set of variables for optimal game
performance. Most good programmers are at least
decent game theorists...which means that it is VERY
easy to destroy a team with perverse incentives.

Example: If you measure developer performance by
lines of code produced, you will get bloated code that
no one wants to refactor and little to no
documentation.

28

What does your project disincentivize?

If the boss gets angry when coders are standing around
talking instead of coding, collaboration plummets.

If the continuous integration tool breaks on 30% of
commits, and has to be manually cleaned up,
programmers will abandon “commit early, commit
often” in favor of fewer, bigger, hard-to-review
commits.

29

Creating culture...

There are many “good” development team cultures, for
varying definitions of “good”. Optimal culture for a
team that quietly and competently maintains
important infrastructure is likely to be different than
for a team that’s trying to bring an edgy and still
somewhat undefined product to market, which is in
turn different from a team that only does incident
response.

What your team does should define its culture, to
attract and keep the most qualified people possible.

30

Secure SwEng BP: Goal

31

Help software developers
and operators deliver and
maintain secure software
over its entire lifecycle.

SwEng Processes/Lifecycle

32

1) Requirements
2) Design
3) Implement
4) Test
5) Maintain

https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg

https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg

vuln mgt

SwEng Lifecycle + Security

33

logging

secure
coding

static
analysis

dynamic
analysis

code
signing

Be security conscious during each phase.

Evolution of SwEng Models

34

● Waterfall
● Incremental
● Extreme
● Spiral
● Agile
● CI/CD

Reqs

Design

Code

Test

Maintain

35

● Waterfall
● Incremental
● Extreme
● Spiral
● Agile
● CI/CD

Individuals and interactions over
processes and tools

Working software over
comprehensive documentation

Customer collaboration over
contract negotiation

Responding to change over
following a plan

http://agilemanifesto.org/ (2001)

http://agilemanifesto.org/
http://agilemanifesto.org/

Traditional vs. Agile

http://dx.doi.org/10.1109/MS.2009.145

36

http://dx.doi.org/10.1109/MS.2009.145
http://dx.doi.org/10.1109/MS.2009.145

37

https://sciencenode.org/feature/xsede-community-builds-an-agile-student.php
https://www.xsede.org/

● Collaboration
● Spiral development
● Pair-programming
● Rapid release

https://sciencenode.org/feature/xsede-community-builds-an-agile-student.php
https://sciencenode.org/feature/xsede-community-builds-an-agile-student.php
https://www.xsede.org/
https://www.xsede.org/

38

● Waterfall
● Incremental
● Extreme
● Spiral
● Agile
● CI/CD

Continuous Integration /
Continuous Delivery:

● prioritize deployable s/w (at
any moment) vs. working
on new features

● incremental s/w change →
automated test & feedback

SwEng Models

39

Extreme ~ Incremental ~ Agile ~ CI/CD

→ DevOps

The idea of doing/automating frequent
builds and tests, after incremental
changes, and making it operational.

40

 security at each phase

 Saltzer & Schroeder (1975):

1. Economy of Mechanism
(simple & small)

2. Separation of Privilege:
(2+ pieces of info for access)

3. Least Privilege
(each process has min priv)

…
8. Psychological Acceptability
 (easy to use)

Further reading

● Dyba, T., and T. Dingsoyr. 2009. “What Do We Know about
Agile Software Development?” IEEE Software.
http://dx.doi.org/10.1109/MS.2009.145

● http://martinfowler.com/bliki/ContinuousDelivery.html
● https://insights.sei.cmu.edu/devops/2014/03/an-introductio

n-to-devops.html
● https://buildsecurityin.us-cert.gov/process-agnostic-navigati

onal-view
● Best Practices in Scientific Computing, G.Wilson, 2014:

http://swcarpentry.github.io/slideshows/best-practices
● Saltzer, J. H. & Schroeder, M. D. "The Protection of

Information in Computer Systems," Proc of the IEEE 63, 9
(1975).

41

http://dx.doi.org/10.1109/MS.2009.145
http://dx.doi.org/10.1109/MS.2009.145
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html
https://insights.sei.cmu.edu/devops/2014/03/an-introduction-to-devops.html
https://insights.sei.cmu.edu/devops/2014/03/an-introduction-to-devops.html
https://insights.sei.cmu.edu/devops/2014/03/an-introduction-to-devops.html
https://buildsecurityin.us-cert.gov/process-agnostic-navigational-view
https://buildsecurityin.us-cert.gov/process-agnostic-navigational-view
https://buildsecurityin.us-cert.gov/process-agnostic-navigational-view
http://swcarpentry.github.io/slideshows/best-practices
http://swcarpentry.github.io/slideshows/best-practices

Software-related Thrusts at CTSC

42

Software Security

43

Secure Software Engineering

Software
Assurance

Situational
Awareness

CTSC has a
thrust in each
of these.

Software Assurance (SwA)

#1) SwA is the level of confidence that software is free from
vulnerabilities, either intentionally designed into the software or
accidentally inserted at any time during its life cycle, and that
the software functions in the intended manner.

#2) The processes (e.g., secure coding, static analysis) that help
improve this level of confidence.

 → secure coding instruction (http://trustedci.org/trainingmaterials)

44

https://samate.nist.gov/Main_Page.html

http://trustedci.org/trainingmaterials
https://samate.nist.gov/Main_Page.html
https://samate.nist.gov/Main_Page.html

Situational Awareness

Being aware of software vulnerabilities and how they might
affect a user community. Offering advice on how to patch or
update vulnerable software.

http://trustedci.org/situational-awareness

http://blog.trustedci.org/2016/08/situational-awar
eness.html

45

http://trustedci.org/situational-awareness
http://trustedci.org/situational-awareness

Situational Awareness: example

perfSONAR provides tools and architecture to help monitor
network performance.
...released updated packages on July 7th to address two
security issues:

1. An unauthenticated remote access vulnerability that could
allow an attacker to view local files as the 'perfsonar' user.

2. A local privilege escalation issue.
(instructions for updating software follow)

46

https://list.indiana.edu/sympa/arc/ctsc-announce-inf-l/2016-07/msg00000.html

https://list.indiana.edu/sympa/arc/ctsc-announce-inf-l/2016-07/msg00000.html
https://list.indiana.edu/sympa/arc/ctsc-announce-inf-l/2016-07/msg00000.html

Secure SwEng BP: Approach

47

● Instill security awareness in
software engineers -
developers and testers.

● Educate them in appropriate
processes, practices, and tools.

Secure SwEng BP Topics

● Repositories
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

48

Secure SwEng BP Topics

● Repositories
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

49

Repositories

What’s in a repository? Everything (we hope).
 e.g. https://github.com/TAlexPerkins/Zika_nmicrobiol_2016

Modern SCMs offer more than just the history of a
code base:

● integrity checking
● automation of common tasks
● cheaper branching and merging, which encourages

better development practices
● the ability to work in a decentralized manner

50

https://github.com/TAlexPerkins/Zika_nmicrobiol_2016

Source code repositories and version control

● CVCS: RCS, CVS, SVN
○ Outmoded, should be migrated away from

● DVCS: Git, Mercurial
○ More modern, but each has trade-offs.
○ If unsure, default to git.

● Each of these systems, especially git and Mercurial,
can also function as a part of a bigger continuous
integration system.

51

Repositories and Hosting Services

Regardless of the repo/hosting service you choose,
be mindful of security considerations:

● physical security
● server logging
● encrypted access
● granularity of access control
● 2FA
● do not commit sensitive data to public repos

○ keep in mind that a currently-private repo may need

to be shared more widely later: keep credentials
separate from code, or you’ll be sanitizing history.

52

Further reading

● https://help.github.com/articles/github-security/
● http://www.theregister.co.uk/2015/01/06/dev_blunder_

shows_github_crawling_with_keyslurping_bots/

53

https://help.github.com/articles/github-security/
https://help.github.com/articles/github-security/
http://www.theregister.co.uk/2015/01/06/dev_blunder_shows_github_crawling_with_keyslurping_bots/
http://www.theregister.co.uk/2015/01/06/dev_blunder_shows_github_crawling_with_keyslurping_bots/
http://www.theregister.co.uk/2015/01/06/dev_blunder_shows_github_crawling_with_keyslurping_bots/
http://www.theregister.co.uk/2015/01/06/dev_blunder_shows_github_crawling_with_keyslurping_bots/

Secure SwEng BP Topics

● Repositories
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

54

Software Testing

● why is it necessary?
● why is it difficult?
● how well does it work?
● can it be made easier?

55

Software Testing

● why is it necessary?
○ test for “correctness”
○ help prevent bugs/vulnerabilities
○ improve usability

● why is it difficult?
● how well does it work?
● can it be made easier?

56

Software Testing

● why is it necessary?
● why is it difficult?

○ time-consuming
○ combinatorial challenge

● how well does it work?
● can it be made easier?

57

Software Testing

● why is it necessary?
● why is it difficult?
● how well does it work?

○ as well as your tests
● can it be made easier?

58

Software Testing

● why is it necessary?
● why is it difficult?
● how well does it work?
● can it be made easier? yes:

○ testing frameworks
○ automated testing (e.g. via CI)

59

Types of Testing

60

● Static
○ code not executing
○ code walkthroughs

● Dynamic
○ code is executing

○ written by software
dev/test engineer

● Black-box
○ don’t know source code

● White-box
○ know source code

Levels of Dynamic Testing

61

● Unit (small)
○ test single functions
○ written by software dev

● Integration (medium)
○ test interacting functions/packages
○ written by software dev/test engineer

● Acceptance (large)
○ overall testing
○ written by test engineer

More Dynamic Testing

62

● Regression
○ as software is modified, make sure no new

(or old) bugs have been introduced

● Combinatorial
○ all combinations of input parameters

● Fuzz
○ with random/noisy inputs

● Security
○ for Confidentiality, Integrity, Availability

(CIA)

DARPA Grand Challenge 2016

63

https://www.cybergrandchallenge.com/
https://github.com/CyberGrandChallenge/

Find (and fix) vulnerabilities in binary codes.
Fuzzing was a favorite technique.

https://www.cybergrandchallenge.com/
https://www.cybergrandchallenge.com/
https://github.com/CyberGrandChallenge/
https://github.com/CyberGrandChallenge/

Testing: think globally, act locally

Acting locally:

Use Assertions in code!

“primary purpose is to instrument code with test probes that will
detect errors as close as possible to their place of occurrence.”
Tony Hoare, 2002

64

“... the programmer should make assertions about
the various states that the machine can reach.”
Alan Turing, 1949

Assertions

Assertions are always expected to be True:

assert(condition)

If they are false at runtime, they will throw an error.
(They can be disabled if desired).

C/C++:
assert(ptr);

Java:
Assert.assertTrue((project1.getCreationTime() -

 project2.getCreationTime()) > 0);

65

Testing: theory

www.di.ens.fr/~cousot/AI/IntroAbsInt.html
66

“It is not possible to write a program able to represent and to compute all
possible executions of any program in all its possible execution
environments.”

t=time

x(t) = vector of (input,state,output)

http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html

Testing Frameworks

● Primarily for Unit Testing

● xUnit: for Unit testing
○ JUnit (Java), PyUnit (Python), etc.

wikipedia: List_of_unit_testing_frameworks

- lots of languages, lots of frameworks

67

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

Automated Testing

68

www.owasp.org/index.php/Appendix_A:_Testing_Tools

e.g.:
● github.com/google/googletest

○ Google’s (open source) C++ testing framework
● http://docs.seleniumhq.org/

○ OSS for testing web applications

https://www.owasp.org/index.php/Appendix_A:_Testing_Tools
https://www.owasp.org/index.php/Appendix_A:_Testing_Tools
https://github.com/google/googletest
https://github.com/google/googletest
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/

Automated Testing

69

https://golang.org/pkg/testing/

testing Package testing provides support for automated testing of Go pkgs.
iotest implements Readers and Writers useful mainly for testing.
quick implements utility functions to help with black box testing.

Some languages are better equipped for testing than others.

This may be useful for the next generation of software
projects, but may not help us today.

Thoughts?

https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/iotest/
https://golang.org/pkg/testing/iotest/
https://golang.org/pkg/testing/iotest/
https://golang.org/pkg/testing/iotest/
https://golang.org/pkg/testing/quick/
https://golang.org/pkg/testing/quick/
https://golang.org/pkg/testing/quick/
https://golang.org/pkg/testing/quick/

Testing Suites

The Software Assurance Reference Dataset (SARD)
provide users, researchers, and software security
assurance tool developers with a set of known security
flaws.

http://samate.nist.gov/index.php/SARD.html

https://samate.nist.gov/SARD/testsuite.php?login=Guest

70

http://samate.nist.gov/index.php/SARD.html
http://samate.nist.gov/index.php/SARD.html
http://samate.nist.gov/index.php/SARD.html
https://samate.nist.gov/SARD/testsuite.php?login=Guest
https://samate.nist.gov/SARD/testsuite.php?login=Guest

Further reading

● Kanewala, U. and J. M. Bieman. 2014. “Testing Scientific Software: A
Systematic Literature Review.” Information and Software Technology 56 (10):
1219–32. http://dx.doi.org/10.1016/j.infsof.2014.05.006

● Introducing Combinatorial Testing in a Large Organization: Experience
Report, J. Hagar. D.R. Kuhn, R.N. Kacker, T. Wissink. IEEE Computer, April
2015.

● http://csrc.nist.gov/groups/SNS/acts/documents/kuhn-kacker-lei-hunter09.
pdf

● https://www.wired.com/2016/06/hacker-lexicon-fuzzing/
● Hoare, T. 2002. “Assertions in Modern Software Engineering Practice.” In

Computer Software and Applications Conference, 2002. COMPSAC 2002.
Proceedings. 26th Annual International, 459–459.

● http://www.turingarchive.org/viewer/?id=462&title=01a

71

http://dx.doi.org/10.1016/j.infsof.2014.05.006
http://csrc.nist.gov/groups/SNS/acts/documents/poster-iwct14-lm2.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/poster-iwct14-lm2.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/poster-iwct14-lm2.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7085645
http://csrc.nist.gov/groups/SNS/acts/documents/kuhn-kacker-lei-hunter09.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/kuhn-kacker-lei-hunter09.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/kuhn-kacker-lei-hunter09.pdf
https://www.wired.com/2016/06/hacker-lexicon-fuzzing/
https://www.wired.com/2016/06/hacker-lexicon-fuzzing/
http://www.turingarchive.org/viewer/?id=462&title=01a
http://www.turingarchive.org/viewer/?id=462&title=01a

Secure SwEng BP Topics

● Repositories
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

72

$ make hello
c++ -std=c++11 hello.cpp -o hello
hello.cpp:15:7: warning: using the result of an assignment as a
condition without parentheses [-Wparentheses]
 if (a=b) {
...
hello.cpp:15:7: note: use '==' to turn this assignment into an
equality comparison

73

Static Analysis

Static analysis tools try to find bugs/vulnerabilities in
source code. Bugs are then categorized by severity.

Q: why doesn’t every software developer use static
analysis tools?

Do you/your team?

74

Static Analysis

Static analysis tools try to find bugs/vulnerabilities in
source code. Bugs are then categorized by severity.

Q: why doesn’t every software developer use static
analysis tools?

A (typically): hassle (time, learning curve),

false positives, doesn’t catch complex vulnerabilities, ...

75

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Coverity Scan (free for OSS)

Defect density is measured by the number
of defects per 1,000 lines of code

76

e.g.,

SonarQube (https://sonarqube.com/)

77

● OSS
● Used by many

projects
● Can be integrated

with Eclipse IDE

https://sonarqube.com/

78

79

Static Analysis Plugins:
e.g. IntelliJ IDEA + FindBugs

80

(We will re-visit static analysis plugins for IDEs in
the Tools section)

Static analysis as a service: SWAMP

SWAMP - SoftWare Assurance MarketPlace

https://continuousassurance.org/

81

https://continuousassurance.org/
https://continuousassurance.org/

Example: Upload, Build, Analyze

82

Example: Upload, Build, Analyze

83

Describe
build
process

Example: Upload, Build, Analyze

84

Example: Upload, Build, Analyze

85

Examples of potential vulnerabilities

•CWE-398: Indicator of Poor Code Quality

•CWE-547: Use of Hard-coded, Security-relevant Constants

•CWE-252: Unchecked Return Value

•CWE-571: Expression is Always True

•CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined

•CWE-584: Return Inside Finally Block

•CWE-563: Assignment to Variable without Use ('Unused Variable')

•CWE-478: Missing Default Case in Switch Statement

•CWE-495: Private Array-Typed Field Returned From A Public Method

86

cwe.mitre.org - Common Weakness Enumeration:
 a dictionary of software weakness types.

https://cwe.mitre.org/
https://cwe.mitre.org/

For more in-depth details, see “secure coding” related
slides at:

http://trustedci.org/trainingmaterials/

87

http://trustedci.org/trainingmaterials/
http://trustedci.org/trainingmaterials/

Further reading

● Johnson, B., Y. Song, E. Murphy-Hill, and R. Bowdidge. 2013. “Why Don’t
Software Developers Use Static Analysis Tools to Find Bugs?” In Proceedings
of the 2013 International Conference on Software Engineering, 672–81. ICSE
’13. Piscataway, NJ, USA: IEEE Press.

● Kupsch, J. A., E. Heymann, B. Miller, and V. Basupalli. 2016. “Bad and Good
News about Using Software Assurance Tools.” Software: Practice &
Experience, doi:10.1002/spe.2401 .
http://onlinelibrary.wiley.com/doi/10.1002/spe.2401/full

● http://trustedci.org/trainingmaterials/

88

http://onlinelibrary.wiley.com/doi/10.1002/spe.2401/full
http://onlinelibrary.wiley.com/doi/10.1002/spe.2401/full
http://trustedci.org/trainingmaterials/
http://trustedci.org/trainingmaterials/

Secure SwEng BP Topics

● Repositories
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

89

Vulnerability Management

Phases of vulnerability management (after one has
been found):

● Notifying* appropriate people
● Fixing/Patching
● Testing
● Communicating* fix

patch: a software update that can be applied to an existing
code base in order to eliminate one or more vulnerabilities.

90

* responsibly, hopefully

Vulnerability Management

91

Wouldn’t it be great if it was this simple?

Vulnerability Management

92

It can be complicated:

● software dependencies
● complex configuration
● mission-critical uptime
● difficult to reach resources
● what else?

Further reading

93

● http://blog.trustedci.org/search/label/vulnerabilities
● https://www.sans.org/reading-room/whitepapers/applicat

ion/building-application-vulnerability-management-progra
m-35297

● http://www.pcworld.com/article/2059580/opensource-sof
tware-projects-need-to-improve-vulnerability-handling-pra
ctices-researchers-say.html

● https://www.apache.org/security/committers.html
● https://blog.jupyter.org/2016/08/03/security-fix-notebook

-4-2-2/
● https://www.debian.org/doc/manuals/securing-debian-ho

wto/ch7.en.html

http://blog.trustedci.org/search/label/vulnerabilities
http://blog.trustedci.org/search/label/vulnerabilities
https://www.sans.org/reading-room/whitepapers/application/building-application-vulnerability-management-program-35297
https://www.sans.org/reading-room/whitepapers/application/building-application-vulnerability-management-program-35297
https://www.sans.org/reading-room/whitepapers/application/building-application-vulnerability-management-program-35297
https://www.sans.org/reading-room/whitepapers/application/building-application-vulnerability-management-program-35297
http://www.pcworld.com/article/2059580/opensource-software-projects-need-to-improve-vulnerability-handling-practices-researchers-say.html
http://www.pcworld.com/article/2059580/opensource-software-projects-need-to-improve-vulnerability-handling-practices-researchers-say.html
http://www.pcworld.com/article/2059580/opensource-software-projects-need-to-improve-vulnerability-handling-practices-researchers-say.html
http://www.pcworld.com/article/2059580/opensource-software-projects-need-to-improve-vulnerability-handling-practices-researchers-say.html
https://www.apache.org/security/committers.html
https://www.apache.org/security/committers.html
https://blog.jupyter.org/2016/08/03/security-fix-notebook-4-2-2/
https://blog.jupyter.org/2016/08/03/security-fix-notebook-4-2-2/
https://blog.jupyter.org/2016/08/03/security-fix-notebook-4-2-2/
https://www.debian.org/doc/manuals/securing-debian-howto/ch7.en.html
https://www.debian.org/doc/manuals/securing-debian-howto/ch7.en.html
https://www.debian.org/doc/manuals/securing-debian-howto/ch7.en.html

Secure SwEng BP Topics

● Repositories
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

94

Release & Delivery

How can one help ensure the authenticity

and integrity of software (and data)?

● cryptographic checksums, hashes
● SHA-{1,2,3} (Secure Hash Alg) …
● digital signatures (e.g., GPG)

1) Download a file

2) Compute a hash on it

3) Compare to published hash

95

Simple example

#include <stdio.h>
int main()
{
 printf("hello, world\n");
}

$ md5 hello.c

MD5 (hello.c) = 86d1a675a06b1ea6e7ddc90e79153cdf

---------------- edit hello.c and add another blank space before ‘world’

$ md5 hello.c

MD5 (hello.c) = 3a0e40763afa9337c5275c4e70a86943

$ shasum -a 256 hello.c

f5f3cff1beb5cfb9b9be6702c0da3964c996b78c4e1db286a96712a8bd37ef47 hello.c

96

Example: MD5

pS-Toolkit-3.5.1-NetInstall-i386-2016Mar03.iso 03-Mar-2016 15:15 225M
pS-Toolkit-3.5.1-NetInstall-i386-2016Mar03.iso.md5 03-Mar-2016 15:15 81

Verify validity:

$ more pS-Toolkit-3.5.1-NetInstall-i386-2016Mar03.iso.md5
bfa2972732fe2a04abea1de368cdae61
pS-Toolkit-3.5.1-NetInstall-i386-2016Mar03.iso

$ md5 pS-Toolkit-3.5.1-NetInstall-i386-2016Mar03.iso
MD5 (pS-Toolkit-3.5.1-NetInstall-i386-2016Mar03.iso) =
bfa2972732fe2a04abea1de368cdae61

R. Rivest, The MD5 Message-Digest Algorithm , RFC Editor, 1992

97

You will likely encounter codes with MD5 hashes.
But, do NOT use MD5 for your own code/data.

http://software.internet2.edu/pS-Performance_Toolkit/
http://software.internet2.edu/pS-Performance_Toolkit/
http://software.internet2.edu/pS-Performance_Toolkit/pS-Toolkit-3.5.1-NetInstall-i386-2016Mar03.iso.md5
http://software.internet2.edu/pS-Performance_Toolkit/pS-Toolkit-3.5.1-NetInstall-i386-2016Mar03.iso.md5
http://dl.acm.org/citation.cfm?id=RFC1321&CFID=766545538&CFTOKEN=92815577
http://dl.acm.org/citation.cfm?id=RFC1321&CFID=766545538&CFTOKEN=92815577
http://dl.acm.org/citation.cfm?id=RFC1321&CFID=766545538&CFTOKEN=92815577

SHA-Secure Hash Alg.

http://toolkit.globus.org/.../globus_toolkit-6.0.1453307864.pkg.sha1

39e9fb34c8dd3f9025ffbe21392e9b071ac57c36

http://toolkit.globus.org/.../globus_toolkit-6.0.1453307864.pkg.sha512

4bea23ea575cd1924b0843699c5bb74ff137410d8bb5bd1f01b3c46530981bc97d2b162
716bd0dfdb373e95e63af05d199e31dacebd1013620d0dfb11c2d2719

-------- verify after downloading:

$ shasum globus_toolkit-6.0.1453307864.pkg # defaults to SHA1

39e9fb34c8dd3f9025ffbe21392e9b071ac57c36

$ shasum -a 512 globus_toolkit-6.0.1453307864.pkg

4bea23ea575cd1924b0843699c5bb74ff137410d8bb5bd1f01b3c46530981bc97d2b162
716bd0dfdb373e95e63af05d199e31dacebd1013620d0dfb11c2d2719

98

http://toolkit.globus.org/ftppub/gt6/installers/mac/globus_toolkit-6.0.1453307864.pkg.sha1
http://toolkit.globus.org/ftppub/gt6/installers/mac/globus_toolkit-6.0.1453307864.pkg.sha1
http://toolkit.globus.org/ftppub/gt6/installers/mac/globus_toolkit-6.0.1453307864.pkg.sha1
http://toolkit.globus.org/ftppub/gt6/installers/mac/globus_toolkit-6.0.1453307864.pkg.sha512
http://toolkit.globus.org/ftppub/gt6/installers/mac/globus_toolkit-6.0.1453307864.pkg.sha512
http://toolkit.globus.org/ftppub/gt6/installers/mac/globus_toolkit-6.0.1453307864.pkg.sha512

~10M in size

SHA-n: how long to compute?

$ time shasum -a 1 globus_toolkit-6.0.1453307864.pkg
39e9fb34c8dd3f9025ffbe21392e9b071ac57c36 globus_toolkit-6.0.1453307864.pkg

real 0m0.073s
user 0m0.059s
sys 0m0.010s

$ time shasum -a 512 globus_toolkit-6.0.1453307864.pkg
4bea23ea575cd1924b0843699c5bb74ff137410d8bb5bd1f01b3c46530981bc97d2b162
716bd0dfdb373e95e63af05d199e31dacebd1013620d0dfb11c2d2719
globus_toolkit-6.0.1453307864.pkg

real 0m0.100s
user 0m0.085s
sys 0m0.011s

99

Digital signatures: e.g. GPG

A digital signature certifies and timestamps a
document. If the document is subsequently modified in
any way, a verification of the signature will fail.

“signature” via private key.

GPG (Gnu Privacy Guard):
Free implementation of the OpenPGP standard (www.ietf.org/rfc/rfc4880.txt)

100

Further reading

101

● https://www.apache.org/dev/release-signing (PGP
signatures)

● https://www.gnupg.org/faq/gnupg-faq.html
● http://oss-watch.ac.uk/resources/releasemanagementbestpr

actice (PGP signatures, hashes)
● http://blog.sonatype.com/2010/01/how-to-generate-pgp-sig

natures-with-maven/ (Maven central repo requires PGP
signatures)

● https://www.schneier.com/blog/archives/2012/10/keccak_is
_sha-3.html

● https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Wor
k

https://www.apache.org/dev/release-signing
http://oss-watch.ac.uk/resources/releasemanagementbestpractice
http://oss-watch.ac.uk/resources/releasemanagementbestpractice
http://oss-watch.ac.uk/resources/releasemanagementbestpractice
http://blog.sonatype.com/2010/01/how-to-generate-pgp-signatures-with-maven/
http://blog.sonatype.com/2010/01/how-to-generate-pgp-signatures-with-maven/
https://www.schneier.com/blog/archives/2012/10/keccak_is_sha-3.html
https://www.schneier.com/blog/archives/2012/10/keccak_is_sha-3.html
https://www.schneier.com/blog/archives/2012/10/keccak_is_sha-3.html
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work

Secure SwEng BP Topics

● Repositories
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

102

Choosing Tools and Libraries in an Imperfect
World

103

Confidence vs. Migration Cost

104

Confidence

M
ig

ra
tio

n
C

os
t

Qualities that inspire confidence
in tools and libraries:

105

● Resources appropriate to the scope and complexity
of the project.

● Adoption/dependance by players capable of
resourcing the project if it is in trouble.

● License that facilitates forking should the project be
mishandled by or lose the interest of current
maintainers.

● Maturity of software development practices
(behaviors we’re teaching in this training).

● Quality of architecture and maintainability of code.

Qualities that reduce migration cost
from tools and libraries:

● Ability to get copies of data (if you aren’t already
self-hosting).

● Open, standard data formats (where applicable).
● Use of standard protocols and interfaces.
● Tool/library criticality to your projects (trivial use is

trivial to give up)

106

Coding/Project Tools

Tools for writing/modifying/maintaining/managing
code and overall software project.

How do coding/project tools help improve software
security?

● convenience of integrated functionality:
○ code navigation, repo access, debugging, etc.

● community reviewing
● integrated static analysis
● issue tracking: prioritize, assign responsibility

107

Project and Issue Tracking tools

e.g. JIRA (https://www.atlassian.com/software/jira)

108

Courtesy of Apache
Airavata project.

https://www.atlassian.com/software/jira
https://issues.apache.org/jira/browse/airavata/?selectedTab=com.atlassian.jira.jira-projects-plugin:issues-panel
https://issues.apache.org/jira/browse/airavata/?selectedTab=com.atlassian.jira.jira-projects-plugin:issues-panel

Issue Tracking & Vuln Patching

For a public project with issue tracking, there needs to
be a mechanism to keep certain issues private, e.g.,
vulnerability patches until they are ready for release.

Experiences?

109

Continuous Integration

110

Continuous Integration (CI), which some people think is
a relatively new concept, is actually not so new:

Grady Booch, Object-Oriented Analysis and Design with Applications, 2nd Ed, 1993.

“Individual developers can create their own stable release into
which they integrate new versions of the software for which
they are responsible, before releasing it to the rest of the team.
In this manner, we have a platform for continuous integration of
new code.”

CI in the Cloud

111

Continuous Integration as a cloud service is newer.

 Some popular CI tools include:

● Travis - travis-ci.org (limited to github)
● Bamboo - www.atlassian.com/software/bamboo

● Jenkins - jenkins.io

Meyer, M. 2014. “Continuous Integration and Its Tools.”
IEEE Software 31 (3): 14–16.

https://travis-ci.org/
https://www.atlassian.com/software/bamboo
https://jenkins.io/

Travis CI (Linux & OSX)

● a hosted CI service
● integrates with GitHub
● free for open source projects
● “easy to use”

112

Basic idea:

● Allow Travis CI to access your github repo
● Create a .yml file to describe your build
 https://docs.travis-ci.com/user/customizing-the-build/

● A “push” will auto-generate a build

https://docs.travis-ci.com/user/customizing-the-build/

113

AppVeyor (Windows)

● free for open source projects
● www.appveyor.com
● software as a service

114

Continuous Integration: Pegasus WMS

Each commit:

● triggers a build of the current dev branch. This results in
documentation and rpm, deb and binary packages.

● triggers units tests of the various components.

Nightly: end to end workflow tests (workflows are for the last
major release branch and the current dev branch).

115

https://github.com/pegasus-isi/pegasus

https://www.atlassian.com/software/bamboo

https://github.com/pegasus-isi/pegasus
https://github.com/pegasus-isi/pegasus
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo

Continuous Integration & Quality Control

The SonarQube® platform is an open source quality management platform,
dedicated to continuously analyzing and measuring the technical quality of source
code, from project portfolio down to the method level, and tracking the
introduction of new Bugs, Vulnerabilities, and Code Smells in the Leak Period.

116

http://www.sonarsource.org/
http://docs.sonarqube.org/display/HOME/Fixing+the+Water+Leak

Integrated Dev Environments (IDEs)

117

Integrated Dev Environments (IDEs)

● Convenience of integrated functionality:
○ editing
○ debugging
○ profiling
○ testing
○ repos/version control

● Most allow 3rd party plugins:
○ static analysis
○ memory checking
○ …

IDEs are just another tool.
118

Generic IDE layout

119

“biggest advantage of IDE is debugging is easier, and
code navigation is one click” (developer w/ a CTSC engagement)

output, debugging, etc.

projects/files;
git repos, etc.

outline
view, etc.

editing, etc.

IDEs: mostly GUI-driven

120

E.g. git perspective

IDEs: most allow 3rd party plugins

121

e.g., FindBugs:
static analysis for
Java code

IDEs: Warning/Error highlighting

122

error: undefined variable

warning: reserved symbol

IDEs: both OSS and commercial

● Eclipse
● XCode
● Visual Studio
● IntelliJ
● NetBeans
● Nuclide - javascript

● ...
● https://www.jetbrains.{com,org}
● https://pypl.github.io/IDE.html

123

many have support for
multiple languages

https://pypl.github.io/IDE.html
https://pypl.github.io/IDE.html

IDEs continue to evolve

“Jupyter web-based IDEs… teaching Data Science
course with 500 students, largely freshmen, entirely
through Jupyter running on Azure and campus-based
servers. I find these platforms significantly lower the
bar of getting students up and running without
installing software on heterogeneous & under-powered
machines…”

- Carl Boettiger, UC Berkeley (comment in
ctsc-discuss mailing list)

124

https://github.com/jupyterhub/jupyterhub
http://trustedci.org/ctsc-email-lists/
http://trustedci.org/ctsc-email-lists/

Further Reading

● https://docs.travis-ci.com/
● https://pypl.github.io/IDE.html - popularity ranking

of IDEs

125

https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://pypl.github.io/IDE.html

Secure SwEng BP Topics

● Repositories
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

126

Documentation

Document design & purpose, not mechanics.
a) Document interfaces and reasons, not implementations.
b) Refactor code in preference to explaining how it works.
c) Embed the documentation for a piece of software in that
 software.

127

Wilson, Greg, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong,

Matt Davis, Richard T. Guy, Steven H. D. Haddock, et al. 2014.

“Best Practices for Scientific Computing.” PLoS Biology 12 (1):

e1001745. dx.doi.org/10.1371/journal.pbio.1001745

http://dx.doi.org/10.1371/journal.pbio.1001745

Automatic documentation

Tools exist that generate useful docs for your code if
you include that documentation in your code and
follow the tools’ syntactic rules.

● motivation for embedding your documentation
● generates easy-to-navigate HTML/Latex/etc docs

128

Javadoc: Generates HTML pages of API
documentation from Java source files

/**
 * Returns an Image object that can then be painted on the screen.
 * The url argument must specify an absolute {@link URL}. The name
 * argument is a specifier that is relative to the url argument.
 * <p>
 * This method always returns immediately, whether or not the
 * image exists. When this applet attempts to draw the image on
 * the screen, the data will be loaded. The graphics primitives
 * that draw the image will incrementally paint on the screen.
 *
 * @param url an absolute URL giving the base location of the image
 * @param name the location of the image, relative to the url argument
 * @return the image at the specified URL
 * @see Image
 */
 public Image getImage(URL url, String name) {
 try {
 return getImage(new URL(url, name));
 } catch (MalformedURLException e) {
 return null;
 }
 }

129

getImage
public Image getImage(URL url,
 String name)
Returns an Image object that can then be painted on the screen. The url
argument must specify an absolute URL. The name argument is a specifier
that is relative to the url argument.

This method always returns immediately, whether or not the image exists.
When this applet attempts to draw the image on the screen, the data will be
loaded. The graphics primitives that draw the image will incrementally paint
on the screen.

Parameters:
url - an absolute URL giving the base location of the image.

name - the location of the image, relative to the url argument.

Returns:
the image at the specified URL.

See Also:
Image

http://www.oracle.com/technetwork/articles/java/index-137868.html#%7B@link%7D
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@param
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@param
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@return
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@see
http://docs.oracle.com/javase/7/docs/api/java/awt/Image.html
http://docs.oracle.com/javase/7/docs/api/java/net/URL.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/awt/Image.html
http://docs.oracle.com/javase/7/docs/api/java/awt/Image.html

130

Doxygen

“Doxygen is the de facto standard tool for generating
documentation from annotated C++ sources, but it also supports
other popular programming languages such as C, Objective-C,
C#, PHP, Java, Python, IDL, Fortran, VHDL, Tcl, …”

C/C++: Docs annotation is inserted into headers (.h):

// .NAME classname - brief description

// .SECTION Description

// more detailed description

…

 // Description:

 // Assign a data object as input. Note that this method ...

 void SetInputData(int index, vtkDataObject* obj);

131

132

133

Python → pydoc, Sphinx

134

yt Project. Last
updated on Jul 25,
2016. Created using
Sphinx 1.3.4.

http://sphinx.pocoo.org/
http://sphinx.pocoo.org/

Further Reading

● https://docs.oracle.com/javase/8/docs/api/
● http://www.stack.nl/~dimitri/doxygen/index.html
● http://www.sphinx-doc.org/en/stable/index.html
● http://www.sphinx-doc.org/en/stable/ext/autodoc.

html
● https://docs.python.org/3/library/pydoc.html

135

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/
http://www.stack.nl/~dimitri/doxygen/index.html
http://www.stack.nl/~dimitri/doxygen/index.html
http://www.sphinx-doc.org/en/stable/index.html
http://www.sphinx-doc.org/en/stable/index.html
http://www.sphinx-doc.org/en/stable/ext/autodoc.html
http://www.sphinx-doc.org/en/stable/ext/autodoc.html
http://www.sphinx-doc.org/en/stable/ext/autodoc.html
https://docs.python.org/3/library/pydoc.html
https://docs.python.org/3/library/pydoc.html

Best Practices: Summary

136

Best Practices

● Join/contribute to mailing lists related to secure software.
● Use a trustworthy software repository and hosting service.
● Use an issue tracking tool.
● Adopt a continuous integration (CI) process and tool.
● Incorporate static analysis into your CI process.
● Address at least the most severe issues from static analysis.
● Provide people-friendly documentation at multiple levels of

the software lifecycle.

137

Best Practices

● Provide a digital signature/hash for your code.
● Validate the authenticity of code you download.
● Perform multiple levels of testing and, when possible,

automate it.
● Use assertions in your code.
● Keep issue tracking, etc, private for vulnerability patches in

progress.
● Put someone in charge of the vulnerability management

process.
● Routinely test web apps using a trusted vulnerability

scanner.

138

Further Reading

General:
http://csrc.nist.gov/publications/PubsTC.html

http://www.sei.cmu.edu/

https://buildsecurityin.us-cert.gov/

More specific:
http://csrc.nist.gov/publications/drafts/800-160/sp800_160_second-draft.pdf

https://samate.nist.gov/Other_Test_Collections.html

http://csrc.nist.gov/groups/SNS/acts/index.html

http://trustedci.org/trainingmaterials/

139

http://csrc.nist.gov/publications/PubsTC.html
http://csrc.nist.gov/publications/PubsTC.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
https://buildsecurityin.us-cert.gov/
https://buildsecurityin.us-cert.gov/
http://csrc.nist.gov/publications/drafts/800-160/sp800_160_second-draft.pdf
http://csrc.nist.gov/publications/drafts/800-160/sp800_160_second-draft.pdf
https://samate.nist.gov/Other_Test_Collections.html
https://samate.nist.gov/Other_Test_Collections.html
http://csrc.nist.gov/groups/SNS/acts/index.html
http://csrc.nist.gov/groups/SNS/acts/index.html
http://trustedci.org/trainingmaterials/
http://trustedci.org/trainingmaterials/

Thank You

Questions/Discussion

trustedci.org
@TrustedCI

We thank the National Science Foundation (grant 1547272) for supporting our work.

The views and conclusions contained herein are those of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the NSF.

140

