Science or Security

George O. Strawn NSF & NITRD (retired)

Caveat auditor

The opinions expressed in this talk are those of the speaker, not the U.S. government

Outline

- Anecdotes about IT security
- Observations about IT security
- Research for next generation IT security

In the beginning...

- When I broke in to this business, IT security meant keeping the machine door locked and putting the backup tapes in another building
- Timesharing on big machines and floppy disks on small ones complicated IT security, but we didn't foresee the future
- The security-free Internet and the Morris worm might have warned us

Post-1995

- At a pitac meeting in the late 1990s, a captain of industry said, "Our customers want simpler and faster networks. Security makes them more complicated and slower. The government will have to take the lead."
- In 2005, the nitrd program stood up the interagency working group, Computer Security and Information Assurance (CSIA)
- The USG as lead customer?

In CIO-land (2003-9)

- I receive assurances that NSF is prepared for a virus...
- I am required to name a senior security official,
 I make my best decision and we spend our best money
- Privacy joins the party and I become the senior privacy official. PII becomes the acronym of the day and CIA becomes Cia

Security and red faces

- Incident one: NSF-funded computers implicated in a major ddos attack. NSF grant to Educause to assist universities with security
- Incident two: Hack attack on a major NSFsupported facility. NSF grant to initiate this series of Security Summits
- Incident three: Hack attack at South Pole Station steals scientific data. NSF invests more in Polar security

Random thoughts

- Cybersecurity is a little like airport security: the first requirements are the appearance of and concern about security
- Cybersecurity is a little like the VA: just because it's underfunded is no excuse for not doing a perfect job
- The people in charge of cybersecurity should keep their necks clean

Observations about security

- Security is a system property, where a system is an interacting set of components, some of which may be (sub)systems
- It is easy to create insecure systems from secure components; it is hard to create secure systems from insecure components
- IT security (eg, CIA--confidentiality, integrity, availability) relates to a system that includes hardware, software, human and other components

Perfection?

- Perfect cybersecurity is as likely as zerofatality automobile traffic
- Plan for mitigating failures as well as preventing them
- Classify failures: embarrassment, cia, financial loss, loss of life (a cps danger)

Risk Management Likelihood * Damage

Likelihood. Low. Medium. High. Damage

Low.

1.

2.

3.

Medium.

2.

4

6.

High.

3.

6.

9.

IT insecurity sources

- Software/hardware/human error (eg, buffer overflow)
- Insider crime
- Social engineering (eg, phishing)
- Third, third, third?

Crooks and Espionage

- Botnets (spam, ddos and key-stroke capture)
- State versus commercial data theft
- Cyberwar
- Where are scientific facilities in all this?

Doing the Right Things vs doing Things Right

- A dollar spent on security is a dollar less for science?
- Is economizing on cybersecurity false economy?
- Maximal bang for the cybersecurity buck is an obvious goal
- Remember the crime novel maxim: "If you can't do the time (suffer the consequences of a particular hack), then don't do the crime (of under-investing)"

More random thoughts

- Keep the whole system in focus, not just the IT
- Increase time and attention paid to risk analysis and mitigation
- Cultivate a bad cop from afar (like OMB for the agencies)

NITRD

- An interagency program under OSTP that coordinates the IT R&D programs of 20 U.S. Federal agencies (check out <u>www.nitrd.gov</u>)
- About \$4 billion annually in agency IT R&D investments, including more than \$700 million in computer security and information assurance (CSIA)
- NITRD has both a CSIA "Interagency Working Group" and a "Senior Steering Group"

Federal Cybersecurity R&D Strategic Plan

TRUSTWORTHY CYBERSPACE:
STRATEGIC PLAN FOR THE
FEDERAL CYBERSECURITY
RESEARCH AND
DEVELOPMENT PROGRAM

Executive Office of the President
National Science and Technology Council

DECEMBER 2011

- Research Themes
 - Tailored Trustworthy Spaces
 - Moving Target
 - Cyber Economic Incentives
 - Designed-In Security
- Science of Cyber Security
- Support for National Priorities
- Transition to Practice

Tailored Trustworthy Spaces

- Paradigm
 - Supporting context-specific trust decisions
 - Basing trust decisions on verifiable assertions
- R&D Program Examples
 - Trusted foundation for cyberspace operations [OSD and Service Labs]
 - High assurance security architectures [NSA, ONR, AFRL, NIST]
 - Content and Context Aware Trusted Router (C2TR) [AFRL]
 - Information Security Automation Program [NIST, NSA, DHS]
 - Security Content Automation Protocol (SCAP) and Access Control Policy Machine [NIST]
 - Military Networking Protocol (MNP) program [DARPA]
 - High-Level Language Support for Trustworthy Networks [NSF]

Moving Target

- Paradigm
 - Providing resilience through agility
 - Continue safe operation in a compromised environment
- R&D Program Examples
 - Polymorphic Enclaves and Polymorphic Machines [AFRL]
 - Self Regenerative, Incorruptible Enterprise that Dynamically Recovers with Immunity [AFRL]
 - Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH) [DARPA]
 - Mission-Oriented Resilient Clouds [DARPA]
 - Cyber Camouflage, Concealment, and Deception [DARPA]
 - Morphing Network Assets to Restrict Adversarial Reconnaissance (Morphinator) [Army]
 - Defensive Enhancements for Information Assurance Technologies (DEFIANT) [Army]
 - Robust Autonomic Computing Systems [ONR]

Cyber Economic Incentives

- Paradigm
 - Developing understanding of what impacts cyber economics
 - Providing incentives to good security
- R&D Program Example
 - NSF Secure and Trustworthy Cyberspace (SaTC)
 Program
 - NSF Computer & Information Science & Engineering Directorate + NSF Social, Behavioral & Economic Sciences Directorate

Designed-In Security

- Paradigm
 - Developing SW systems that are resistant to attacks
 - Generating assurance artifacts to attest to the system's capabilities to withstand attacks
- R&D Program Examples
 - Survivable Systems Engineering [OSD/SEI CERT]
 - Trusted Computing [DARPA, NSA, OSD, NIST]
 - Software Development Environment for Secure System Software & Applications [ONR]
 - META (flows, tools, and processes for correct-byconstruction system design) [DARPA]
 - Software Assurance Metrics And Tool Evaluation (SAMATE) [DHS, NIST]

Supporting National Initiatives

- Health IT
- Smart Grid
- Transportation
- Trusted identities
- Cybersecurity education

Science of Security

- Paradigm
 - Developing scientific foundations to inform the field of cybersecurity
- R&D Program Examples
 - AFOSR 2011 Science of Security MURI
 - Stanford, Berkeley, Cornell, CMU, U of Penn
 - NSA Science of Security Lablets
 - UIUC, NC State, CMU
 - NSF TRUST Program components
 - Berkeley, CMU, Cornell, San Jose SU, Stanford, Vanderbilt

Accelerating Transition to Practice

- Currently, a chasm exists between the research community and the operations community
- Bridging that chasm, commonly referred to as the "valley of death," requires cooperative efforts and investments by both the R&D and operations communities
- CSRI: Computer Security Research Institute

More random thoughts

- The "science" of cybersecurity is harder than previous successes like compilers, operating systems, database systems, networking, etc
- The escalating war between the good guys and the bad guys will continue. Cyber science should help the good guys
- Bad publicity helps, but God forbid a cyber disaster

Finally

- Because cybersecurity is still an immature (and ever-changing) discipline, we see through the glass darkly
- Cloud computing has been called the industrialization of IT. To what extent might it be the industrialization of cybersecurity, too?