
Automated Assessment Tools
Theory & Practice

August 2018

Barton P. Miller
 Computer Sciences Department

University of Wisconsin

bart@cs.wisc.edu

Elisa Heymann
Computer Sciences Department

University of Wisconsin
Universitat Autònoma de Barcelona

elisa@cs.wisc.edu

Overview

•  Very dangerous: Injection Attacks.
•  Introduction to automated assessment

tools.

•  The SWAMP.
•  Hands-on exercise in Java and the

SWAMP.

2

Injection Attacks

3

Objectives

•  Understand the general problem of
injections.

•  Understand what are SQL injections, and
how to mitigate them.

•  Understand what are Command injections,
and how to mitigate them.

4

The Basic Idea
The attacker’s goal:

Getting the system to execute commands that were not
intended (or desired) by the programmer.

In other words, can I put words into the system’s
mouth?

Let’s look at an example based on a popular (and
silly) game.

5

The Word Game
Ask for a list of words:

� A vehicle:

� An outdoor location:

� A food:

� Another food:

� A sport:

� A relaxing activity:

6

chariot

rooftop

scrambled eggs

pickles

javelin throwing

stand on our heads

The Word Game
Ask for a list of words:

� A vehicle:

� An outdoor location:

� A food:

� Another food:

� A sport:

� A relaxing activity:

Then use them in story:
It was a lovely day for a
picnic, so we packed the
� and headed to the � .
The basket was loaded full
of delicious � and � .
We spread out our blanket
and first decided to play �
and then � for a while.

7

chariot

rooftop

scrambled eggs

pickles

javelin throwing

stand on our heads

The Word Game
Ask for a list of words:

� A vehicle:

� An outdoor location:

� A food:

� Another food:

� A sport:

� A relaxing activity:

Then use them in story:
It was a lovely day for a
picnic, so we packed the
chariot and headed to the
rooftop. The basket was
loaded full of delicious
scrambled eggs and pickles.
We spread out our blanket
and first decided to play
javelin throwing and then
stand on our heads for a
while.

8

chariot

rooftop

scrambled eggs

pickles

javelin throwing

stand on our heads

But it can take a darker turn …

relax. Hey kids, now
go to the bank and rob
it, while we stay here

The Word Game
Ask for a list of words:

� A vehicle:

� An outdoor location:

� A food:

� Another food:

� A sport:

� A relaxing activity:

Then use them in story:
It was a lovely day for a
picnic, so we packed the
chariot and headed to the
rooftop. The basket was
loaded full of delicious
scrambled eggs and pickles.
We spread out our blanket
and first decided to play
javelin throwing and then
relax. Hey kids, now go to
the bank and rob it, while we
stay here for a while.

9

chariot

rooftop

scrambled eggs

pickles

javelin throwing

stand on our heads

So, What Went Wrong?

The creator of the game made assumptions about
the words to be provided (the input).

And they trusted the person providing the words to
be reasonable and not cause someone to do
something illegal.

In other words, they did not check the input nor
did they try to prevent any abuse.

Now, let’s look at this in a more technical way …

10

Injection Attacks

•  Description:
–  A string constructed with user input, that is then

interpreted by another function, where the string is not
parsed as expected

•  Command injection (in a shell)

•  SQL injection

•  Code injection (to a language interpreter)

•  XML injections

•  General causes:
–  Allowing metacharacters in the user input
–  Not properly neutralizing user data

if metacharacters are allowed.

11

The Attack Surface

12

Network
Data

Input
File

Web Form
Field

Database
Entry

Environ
Variable

Program
Option

void execSafeProgram(String programName) throws Exception
{

 // only allow execution of programs found in this directory

 String safeDir = "cmd /c C:\\safe_programs\\";

 // check for separator character to prevent path traversal

 if (programName.contains(File.separator)) {

 throw new SecurityException("Path Traversal Detected");

 }

 // start specified program from the safe directory

 Process p = Runtime.getRuntime().exec(safeDir +
programName);

 p.waitFor();

}

13

%
% mail $input < message
%

Command Shell

prog = begin + input + end
eval prog

Interpreter

Database Server

T

select * from T where u = $input

Network Data

xxxx bart xxxxx

Web Form

User: bart

Input from the user,
the attack surface:

Effecting the attack,
impact surface:

SQL Injection Attacks

14

SQL Injections

•  User supplied values used in SQL
command must be validated, quoted,
escaped, or prepared statements must be
used.

•  Signs of vulnerability:
– Uses a database mgmt system (DBMS).
– Creates SQL statements at run-time.
–  Inserts user supplied data directly into

statement without validation.

15

SQL Injections:
attacks and mitigations

•  Dynamically generated SQL without
validation or quoting is vulnerable

 $u = " '; drop table t --";
 $sth = $dbh->do("select * from t where u = '$u'");

 Database sees two statements:

 select * from t where u = ' '; drop table t --'

•  Use prepared statements to mitigate
 $sth = $dbh->do("select * from t where u = ?", $u);
– SQL statement template and

value sent to database
– No mismatch between

intention and use
16

Successful SQL Injection Attack

1. User sends malicious data
boolean Login(String user, String pwd) {
 boolean loggedIn = false;
 conn = pool.getConnection();
 stmt = conn.createStatement();
 rs = stmt.executeQuery("SELECT * FROM members"
 + "WHERE u='" + user
 + "' AND p='" + pwd + "'");
 if (rs.next())
 loggedIn = true;
}

user="admin"; pwd="'OR 'x'='x"

4. System grants access Login() returns true

17

SELECT * FROM members
WHERE u='admin' AND p='' OR 'x'='x'

2. DB Queried

3. Returns all row of table members

Successful SQL Injection Attack

1. User sends malicious data
boolean Login(String user, String pwd) {
 boolean loggedIn = false;
 conn = pool.getConnection();
 stmt = conn.createStatement();
 rs = stmt.executeQuery("SELECT * FROM members"
 + "WHERE u='" + user
 + "' AND p='" + pwd + "'");
 if (rs.next())
 loggedIn = true;
}

user="admin"; pwd="'OR 'x'='x"

4. System grants access Login() returns true

18

SELECT * FROM members
WHERE u='admin' AND p='' OR 'x'='x'

2. DB Queried

3. Returns all row of table members

Mitigated SQL Injection Attack

1. User sends malicious data
boolean Login(String user, String pwd) {
 boolean loggedIn = false;
 conn = pool.getConnection();
 PreparedStatement pstmt = conn.prepareStatement(
 "SELECT * FROM members WHERE u = ? AND p = ?");
 pstmt.setString(1, user);
 pstmt.setString(2, pwd);
 ResultSet rs = pstmt.executeQuery();
 if (rs.next())
 loggedIn = true;
}

user="admin"; pwd="' OR 'x'='x"

4. System does not grant access Login() returns false
19

SELECT * FROM members WHERE u = ?1 AND p = ?2
 ?1 = "admin" ?2 = "' OR 'x'='x"

2. DB Queried 3. Returns null set

20

http://xkcd.com/327

Command Injections

21

22

%
% mailx $input < message
%

Command Shell

prog = begin + input + end
eval prog

Interpreter

T

select * from T where u = $input

Database Server

Network Packet

xxxx bart xxxxx

Web Form

User: bart

Input from the User

23

Command Injections

•  We’re looking for a path from the attack
surface to the variables used in
constructing a shell command.

•  User supplied values must be validated,
quoted, escaped or avoided.

•  Does not attack shell itself. Modifies the
command line of program started by shell.

•  Need to fully understand
command line interface.

An Example: A Server Sending Email
Servers often want to send email to users:

– Your package arrived. J
– Your flight is canceled. L

– You’re over your credit limit. L

The email address comes from input that is
provided by the user.

24

Let us notify you on delivery:

o Add a message:

me@tech.edu

Notification

If you enter me@tech.edu, the command would be:

/bin/mailx -s "Your package" $user

An Example: A Server Sending Email
A common (and risky) way for a program to send email
is to generate a command-line."

25

Let us notify you on delivery:

o Add a message:

me@tech.edu

Notification

me@tech.edu you@bad.com;evil-cmd

you@bad.com; evil-cmd

If you enter you@bad.com;evil-cmd, then you might
execute any command you want on the server.

A More Arcane Example
Now, suppose that you’ve prevented an injection
attack from the email address by eliminating
quotes and “;” from appearing in the email
address.…

… is there any more attack surface?
… could an attacker somehow use the message
text to inject a command?

26

Let us notify you on delivery:

o Add a message:

me@tech.edu

Happy birthday, dad!

Enjoy the wine.

Notification

...
rm –rf *
...

þ

27

To give away the ending: Yes!

Let’s see how this could be done, using the Unix
(Posix) standard mailx command-line mailer …

A More Arcane Example

28

mailx allows you to control some options from
within the mail text.

For example:

 ~s Your package was delivered
 ~b you@bad.com

And, more interestingly:

 ~! ls -lt

You have to enable this feature with
the mailx command-line option: -~

A More Arcane Example

A More Arcane Example
Attack strategy is to enter email address:

 -~ you@bad.com
And somewhere in the message text:

 ~! rm –rf *

29

Let us notify you on delivery:

o Add a message:

-~ you@bad.com

Notification

...
~! rm –rf *
...

þ

Command Injection Mitigations
Avoid creating commands at runtime, if possible.

Use libraries or classes when available, e.g.:

Java: Many choices, such as the standard JavaMail API.
Includes simple methods for constructing and sending
messages.

Python: Also choices, such as the standard email
package.

Perl: Also choices, such as the popular MIME::Lite or
Email::Stuffer packages.

Web mail services: So so many of them, including
mailgun, MailChimp, Drip, and SendGrid

30

Command Injection Mitigations
Input hygiene:

Check user input for metacharacters such as “;”
and quotes.

Neutralize those metacharacters that can’t be
eliminated or rejected.

Isolate the program in a new process:
–  On Linux, use fork to create process, drop

privileges and then use exec for more control.

31

Command Injections
General signs of a vulnerability:

•  Use of the exec, popen or system kernel calls.

•  Program starting a shell such as sh, or tcsh, or
bash.

•  Not neutralizing command line arguments

It is dangerous to let user input begin with
“-” (Unix) or slash (Windows).

32

33

Perl Command Injections

You’ll find commands in the most
unexpected places:
• open(F, $filename)

– Filename is a tiny language besides opening
•  Open files in various modes
•  Start programs

• dup file descriptors

–  If $filename is "rm -rf /|", you probably
won’t like the result

34

Perl Command Injections
Vulnerable to shell interpretation:

open(C, "$cmd|") open(C, "-|", $cmd)
open(C, "|$cmd") open(C, "|-", $cmd)
`$cmd` qx/$cmd/
system($cmd)

The string $cmd forms a complete shell command line, so
is subject to injection.

Safer from shell interpretation:
open(C, "-|", @argList)
open(C, "|-", @argList)
system(@argList)

The program name and each argument are in a different
location of array @argList. Can’t change what
program runs by modifying an argument.

35

Perl Command Injections

open(CMD, "|/bin/mailx -s $sub $to");
Bad if $to is "badguy@evil.com; rm -rf /"

open(CMD, “|/bin/mailx -s '$sub' '$to'");
Bad if $to is "badguy@evil.com'; rm -rf /'"

open(cmd, "|-", "/bin/mailx", "-s", $sub, $to);
Safe and simpler: use this whenever possible.

36

Ruby Command Injections

Functions prone to injection attacks:
•  Kernel.system(os command)
•  Kernel.exec(os command)
•  `os command` (back tick operator)

•  %x[os command]

37

Python Command Injections

Functions prone to injection attacks:
•  os.system() # execute a command in a subshell

•  os.popen() # open a pipe to/from a command

Automated Assessment Tools

August 2018

Barton P. Miller
 Computer Sciences Department

University of Wisconsin

bart@cs.wisc.edu

Elisa Heymann
Computer Sciences Department

University of Wisconsin
Universitat Autònoma de Barcelona

elisa@cs.wisc.edu

1.  What You Need to
Know about How Tools
Work

2.  The SWAMP

39

Source Code Analysis Tools

40

p = requesttable;
while (p != (struct table *)0)
{
 if (p->entrytype == PEER_MEET)
 {
 found = (!(strcmp (her, p->me)) &&
 !(strcmp (me, p->her)));
 }
 else if (p->entrytype == PUTSERVR)
 {
 found = !(strcmp (her, p->me));
 }
 if (found)
 return (p);
 else
 p = p->next;
 }
 return ((struct table *) 0);

A Bit of History
Compiler warnings

41

A Bit of History

•  Lint (1979)
– C program checker.
– Detects suspicious constructs:

•  Variables being used before being set.
•  Division by zero.

•  Conditions that are constant.
•  Calculations whose result is likely to overflow.

•  Current automated assessment tools are
a sort of “super-Lint”.

42

Source Code Analysis Tools
•  Designed to analyze source code or

binaries to help find security flaws.
•  The source code may contain inadvertent

or deliberate weaknesses that could lead
to security vulnerabilities in the
executable versions of the application
program.

•  Better to use them from the beginning of
the software development life cycle.
– Though commonly applied to legacy code.

43

Source Code Analysis Tools

•  Program that parses and then analyses
the source code.

•  Doesn’t know what the program is
supposed to do.

•  Looks for violations of good programming
practices.

•  Looks for specific programming errors.
•  Works like a compiler

–  Instead of binaries, it produces an
intermediate representation

44

Source Code Analysis Tools

 You can get 2 out of 3

 Courtesy of RedLizards

45

speed

precision

#checks

Source Code Analysis Tools

Different kind of tools:
Syntax vs. semantics
 Interprocedural

 Whole program analysis
 Local vs. paths
 Data flow analysis

 Sound vs. approximate

Implications:
Scalability
 Accuracy

46

Different kind of tools
	
execl	(cmd,	NULL);			

Pattern (syntax) matching

Semantic analysis

47

	

Will say “always dangerous”.

	

cmd	=	“/bin/ls”;

	

Sometimes definitely no.

	

Sometimes definitely yes.

Different kind of tools
	
execl	(cmd,	NULL);			

Pattern (syntax) matching

Semantic analysis

48

	

Will say “always dangerous”. 	

Sometimes definitely no.

	

fgets(cmd,MAX,stdin);

	

Sometimes undetermined.

Different kind of tools
	
execl	(cmd,	NULL);			

Pattern (syntax) matching

Semantic analysis

49

	

Sometimes definitely yes.

	

Will say “always dangerous”.

	

cmd=makecmd();

	

Sometimes definitely no.

Source Code Analysis Tools
How do they work

Identify the code to be analyzed.
– Scripts or build systems that build the

executable.

The parser interprets the source code in
the same way that a compiler does.

50

Source Code Analysis Tools
How do they work

Each invocation of the tool creates a model
of the program:

– Abstract representations of the source
•  Control-flow graph
•  Call graph

•  Information about symbols (variables and type
names)

51

Source Code Analysis Tools
How do they work

Symbolic execution on the model:
– Abstract values for variables.
– Explores paths.

– Based on abstract interpretation and model
checking.

– The analysis is path sensitive.
•  The tool can tell the path for the flow to appear.
•  Points along that path where relevant

transformations occur and conditions on the data
values that must hold.

52

Source Code Analysis Tools
How do they work

The tool issue a set of warnings.
– List with priority levels.

The user goes through the warning list and
labels each warning as:

– True positive.
– False Positive.
– Don’t care.

53

Source Code Analysis Tools
The Output

A tool grades weaknesses according things
such as
 severity,
 potential for exploit, or
 certainty that they are vulnerabilities.

Problems:
– False positives.
– False negatives.

54

Source Code Analysis Tools
The Output

Ultimately people must analyze the tool’s
report and the code then decide:

– Which reported items are not true
weaknesses.

– Which items are acceptable risks and will not
be mitigated.

– Which items to mitigate, and how to mitigate
them.

55

Source Code Analysis Tool
Limitations

No single tool can find every possible
weaknesses:

– A weakness may result in a vulnerability in one
environment but not in another.

– No algorithm can correctly decide in every case
whether or not a piece of code has a property,
such as a weakness.

– Practical analysis algorithms have limits because
of performance, approximations, and intellectual
investment.

– And new exploits are invented and new
vulnerabilities discovered all the time!

56

Source Code Analysis Tools
What can they find

•  Stylistic programming rules.
•  Type discrepancies.
•  Null-pointer dereferences.
•  Buffer overflows.
•  Race conditions.
•  Resource leaks.
•  SQL Injection.

57

Source Code Analysis Tools
What is difficult to find

•  Authentication problems.
– Ex: Use of non-robust passwords.

•  Access control issues.
– Ex: ACL that does not implement the principle

of least privilege.

•  Insecure use of cryptography.
– Ex: Use of a weak key.

58

Source Code Analysis Tools
What is not possible to find

•  Incorrect design.
•  Code that incorrectly implements the

design.
•  Configuration issues, since they are not

represented in the code.

•  Complex weaknesses involving multiple
software components.

59

Code Analysis Basics

Control flow analysis
– Analyze code structure and build a graph

representation.

– Basics blocks and branch/call edges.
– Pointers are difficult.

Data flow analysis
– Usage, calculation, and setting of variables.
– Extract symbolic expressions.
– Arrays are annoying.

– Pointers are difficult.

60

Control Flow Analysis

Control Flow Analysis
Detects control flow dependencies among
different instructions.

Control Flow Graph (CFG)
– Abstract representation of the source code.
– Each node represents a basic block.

– Call or jump targets start a basic block.
– Jumps end a basic block.
– Directed edges represent the control flow.

61

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

if i <= (blen-plen)

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

if i <= (blen-plen)

p=&buf[i]; j=0

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

if i <= (blen-plen)

if (j < plen)

p=&buf[i]; j=0

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p=&buf[i]; j=0

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

p=&buf[i]; j=0

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

if (j >= plen)

p=&buf[i]; j=0

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

if (j >= plen)

p=&buf[i]; j=0

return i

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

i++

if (j >= plen)

p=&buf[i]; j=0

return i

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

i++

return -1

if (j >= plen)

p=&buf[i]; j=0

return i

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];
 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;
 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

i++

return -1

if (j >= plen)

p=&buf[i]; j=0

return i

entry(pat,buf,plen,blen)

Data Flow Analysis

Goal: Is this code safe?
Subgoal:
 Do we violate the borders of buf and pat?

•  Simple dependences
•  Flow insensitivity
•  Loop carried dependences
•  Pointers
•  Aliasing

75

Data Flow Analysis
•  Simple dependences

Back edges

Same node edges

•  Loop carried
dependences

•  Need to understand the
values for i to know that
references to buf[i] are
safe.

•  Same for j and pat[j].

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

i++

return -1

if (j >= plen)

p=&buf[i]; j=0

return i

entry(pat,buf,plen,blen)

Data Flow Analysis
•  Pointers

•  Similar to the data flow
analysis on the previous
slide.

•  Goal is to answer the
question: where does p
point? Are the
references safe?

•  On what variables is p’s
value based?

•  Of course, to calculate
p’s value, we also have to
know i’s value.

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

i++

return -1

if (j >= plen)

p=&buf[i]; j=0

return i

entry(pat,buf,plen,blen)

Data Flow Analysis
•  Pointers

•  Similar to the data flow
analysis on the previous
slide.

•  Goal is to answer the
question: where does p
point? Are the
references safe?

•  On what variables is p’s
value based?

•  Of course, to calculate
p’s value, we also have to
know i’s value.

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

i++

return -1

if (j >= plen)

p=&buf[i]; j=0

return i

entry(pat,buf,plen,blen)

Data Flow Analysis
•  Aliases

•  Note that there are two
completely different
ways to name the same
memory locations.

•  Understand these
aliases can be important
to understanding how
memory is being
referenced.

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

i++

return -1

if (j >= plen)

p=&buf[i]; j=0

return i

entry(pat,buf,plen,blen)

int Find(char *pat, char *buf,
 unsigned int plen,
 unsigned int blen) {

 int i, j;
 char *p;

 i = 0;

 while (i <= (blen - plen)) {
 p = &buf[i];

 j = 0;
 while (j < plen) {
 if (*p != pat[j]) break;

 p++;
 j++;
 }
 if (j >= plen) return i;
 i++;
 }

 return -1;
}

i:[0,0]

i:[0,blen-plen+1]
i:[0,blen-plen]
p:buf[0,blen-plen]
j:[0,0]
j:[0,plen-1]
j:[0,plen-1]
p:[buf[0,blen-plen+plen-1]
p:[buf[1,blen-plen+plen]
j:[0,plen]

j:[0,blen-plen]
i:[0,blen-plen+1]

The goal is to understand
the range of values for
each variable:

Semantic Analysis

And this was a pretty
simple example. It had no

– Pointers to functions
– Virtual functions
–  Interprocedural

analysis
– Context

sensitivity

These make program
analysis slower, less
precise, or both.

81

i=0

if i <= (blen-plen)

if (*p != pat[j])

if (j < plen)

p++; j++

i++

return -1

if (j >= plen)

p=&buf[i]; j=0

return i

entry(pat,buf,plen,blen)

Source Code Analysis Tools.
What is expensive to find

It’s difficult for a tool to explore all the
paths.

– Loops handled considering a small fixed
number of iterations.

– Most tools ignore concurrency.

– Many tools ignore recursive calls.
– Many tools struggle with calls made through

function pointers.

82

1.  What You Need to
Know about How Tools
Work

2.  The Tools And Their

Use

83

Roadmap

•  Motivation
•  Source code example
•  Tools for Java applied to the source code

84

What and Why

•  Learn about different automated tools for
vulnerability assessment.

•  Start with small programs with
weaknesses.

•  Apply different tools to the programs.
•  Understand the output, and the strong

and weak points of using specific tools.

85

How to Describe a Weakness

Descriptive name of weakness (CWE XX)
An intuitive summary of the weakness.
– Attack point: How does the attacker affect the

program.
–  Impact point: Where in the program does the

bad thing actually happen.

– Mitigation: A version of the program that does
not contain the weakness.

(CWEXX_Long_Detailed_File_Name_Containg_The_Code_yy.cpp)

86

87

CWE 601: Open Redirect
 public void doGet(HttpServletRequest request,

1.   HttpServletResponse response)
2.   throws ServletException, IOException {
3.   response.setContentType("text/html");
4.   PrintWriter returnHTML = response.getWriter();
5.   returnHTML.println("<html><head><title>");
6.   returnHTML.println(“Open Redirect");
7.   returnHTML.println("</title></head><body>");
8.  
9.   String data;
10.   data = ""; // initialize data in case there are no cookies.
11.   // Read data from cookies.
12.   Cookie cookieSources[] = request.getCookies();
13.   if (cookieSources != null)
14.   // POTENTIAL FLAW: Read data from the first cookie value.
15.   data = cookieSources[0].getValue();
16.   if (data != null) {
17.   URI uri;
18.   uri = new URI(data);
19.   // POTENTIAL FLAW: redirect is sent verbatim.
20.   response.sendRedirect(data);
21.   return;
22.   }
23.   ...

Open Redirect (CWE 601)

Web app redirects user to malicious site
chosen by an attacker.

– Attack Point: Reading data from the first
cookie using getCookies().

–  Impact Point: SendRedirect()	uses user
supplied data.

– GoodSource: Use a hard-coded string.

CWE601_Open_Redirect__Servlet_getCookies_Servlet_01.java

 It’s a Servlet

88

Tools for Java

•  FindBugs
•  Parasoft Jtest

89

FindBugs

90

FindBugs
•  Open source tool available at

findbugs.sourceforge.net/downloads.html
•  Uses static analysis to look for bugs in Java code.
•  Need to be used with the FindSecurityBugs plugin.

•  Installation: Easy and fast.

91

FindBugs
1. Define FINDBUGS_HOME in the

environment.
2.  Install the Find Security Bugs plugin.
3.  Learn the command line instructions and

also use the graphical interface.

4. Command line interface:
$FINDBUGS_HOME/bin/findbugs	–textui		
–javahome	$JAVA_HOME	
RelativePathTRaversal.java	

5. Graphic Interface: java	–jar	
$FINDBUGS_HOME/lib/findbugs.jar	-gui	

92

FindBugs. Open Redirect
 •  FindBugs

– $FINDBUGS_HOME/bin/findbugs	–textui		
–auxclasspath	./servlet-api.jar	
OpenRedirect.class	
• 1 irrelevant warning.

• 1 true positive: It detects the Open Redirect
vulnerability.

93

FindBugs. Open Redirect

94

Parasoft Jtest

95

Jtest
•  Commercial tool available at http://

www.parasoft.com/product/jtest/
•  Automates a broad range of practices proven

to improve development team productivity and
software quality.

•  Standalone Linux 9.5 version used.
– gui mode and command line mode.

•  Installation process: Slow download & easy
installation.

96

Jtest

1.  Include /u/e/l/elisa/Jtest/9.5 in path.
2.  Include the license.

3.  Learn the command line instructions and also
use the graphical interface.

97

Jtest
1.  Command line interface: $jtestcli	

<options>	
2.  Graphic Interface: jtest&	
3.  Create a project and copy the .java	files to

the project/src directory.
4.  Different tests available. We chose

Security->CWE	Top	25.

98

Jtest. Open Redirect

Create the OpenRedir project.
Include servlet-api.jar in the OpenRedir project.
cp	OpenRedirect.java	~elisa/parasoft/
workspace1/OpenRedir/src	

• 4 issues detected:
–  getCookies() returns tainted data.

–  cookieSources[0].getValue()	should be validated.

–  2 Open Redirect detected.

•  It detects the Open Redirect for both the
good and bad cases.

99

Jtest. Open Redirect

100

Jtest. Open Redirect

101

Jtest. Open Redirect

102

The SWAMP

103

Background.
Automated Assessment Tools

104

 String data;
 data = "";
 // Read data from cookies.
 Cookie cookieSources[] =

 request.getCookies();

 if (cookieSources != null)
 data = cookieSources[0].getValue();
 if (data != null) {
 URI uri;
 uri = new URI(data)
 }

Background:
Common Weakness Enumeration (CWE)

“CWE is a community-developed list of common
software security weaknesses.” cwe.mitre.org

Provides a unified and precise way to name software
weaknesses.

Allows a more effective use of software security tools.

714 weaknesses in 237 categories.

Each CWE includes: ID, description, consequences,
examples, potential mitigations.

https://cwe.mitre.org/

105

Background:
Common Vulnerabilities and Exposures

(CVE)
CVE is a standard way to name security vulnerabilities.

“Consists of a list of common identifiers for publicly
known cyber security vulnerabilities”.

Provides a baseline to be used for comparing and
evaluating automated assessment tools.

Example: Heartbleed is CVE - CVE-2014-0160.

Over 90,000 CVEs.

https://cve.mitre.org/

106

Getting Started with the SWAMP

•  Software Assurance Market Place.
•  Objective: Automate and simplify the use

of (multiple) tools.
•  A national, no-cost resource for software

assurance (SwA) technologies used
across research institutions, non-
governmental organizations, and civilian
agencies and their communities as both a
research platform and a core component
of the software development life cycle.

107

Core SWAMP Functionality

108

Cl
ie
nt
s	

SW
AM

P	

SWAMP	
(Build	&	SCA	Tes2ng)	

Na2ve	Viewer	

Code	Dx	

SWAMP Result Viewers

Send Application to SWAMP
for build and assess

Supports Task Send results

Tools	Tools	Tools	Tools	Pla?orms	

Tools	Tools	Tools	Tools	Tools	

Upload Package
Source Code

and Build
Description

Download
SCARF Results View Results

SWAMP Tools and Platforms

C/C++
Cppcheck
Clang Static Analyzer
Gcc Warnings
Parasoft C/C++Test
GrammaTech CodeSonar
Synopsys Coverity

Java
SpotBugs
FindBugs with

FindSecurityBugs and
fb-contrib plug-ins

Error Prone
PMD
Checkstyle
OWASP Dependency-
Check
Parasoft Jtest

Android
Android Lint
RevealDroid

Debian
Ubuntu
CentOS
Scientific
Linux
Fedora

109

Python
Bandit
Flake8
Pylint

Ruby
Brakeman
Dawnscanner
Reek
Rubocop
Ruby-lint

PHP
PHPMD
PHP_Codesniffer

JavaScript
ESLint
Flow
JSHint
Retire.js

HTML
HTML Tidy

CSS
CSS Lint

XML
XML Lint

Code Metrics (all)
Cloc
Lizard

Tools Platforms

SWAMP Glossary

Package: A program, with all its source files
and build (“make”) commands. More than
one user can share this package.

Project: A list of packages and a place to
store the result of assessing those
packages. Can be shared amongst different
users.

Assessment: Running an analysis tool on a
particular package.

110

Steps with the SWAMP
1. Create a new Project.

2. Add new Packages to that Project.

Either:

1.  Upload a new package or

2.  Reference a package that already exists in the
SWAMP.

3. Assess the Packages with the desired Tools.

4. View the results of the assessment.

5.  Interpret the results and fix the problems.

111

112

CWE 601: Open Redirect
 public void doGet(HttpServletRequest request,

1.   HttpServletResponse response)
2.   throws ServletException, IOException {
3.   response.setContentType("text/html");
4.   PrintWriter returnHTML = response.getWriter();
5.   returnHTML.println("<html><head><title>");
6.   returnHTML.println(“Open Redirect");
7.   returnHTML.println("</title></head><body>");
8.  
9.   String data;
10.   data = ""; // initialize data in case there are no cookies.
11.   // Read data from cookies.
12.   Cookie cookieSources[] = request.getCookies();
13.   if (cookieSources != null)
14.   // POTENTIAL FLAW: Read data from the first cookie value.
15.   data = cookieSources[0].getValue();
16.   if (data != null) {
17.   URI uri;
18.   uri = new URI(data);
19.   // POTENTIAL FLAW: redirect is sent verbatim.
20.   response.sendRedirect(data);
21.   return;
22.   }
23.   ...

How to Describe a Weakness

– Attack point: How does the attacker affect the
program.

–  Impact point: Where in the program does the
bad thing actually happen.

We describe these concepts in more depth in our
module on “Thinking Like an Attacker”.

113

Open Redirect (CWE 601)
Web app redirects user to malicious site
chosen by an attacker.
Code with weakness:

– Attack Point: Reading data from the first
cookie using getCookies().

–  Impact Point: SendRedirect()	uses user
supplied data.

Code without the weakness:
– Use a hard-coded string as argument to
SendRedirect().

CWE601_Open_Redirect__Servlet_getCookies_Servlet_01.java

114

Register to use the SWAMP

115

How Can you Identify Yourself

•  Your SWAMP Login/Password.
•  Your github account.
•  Your Google account.
•  Your university account though CILogon/

InCommon. http://www.cilogon.org/

Check if you belong to a participating
organization:
https://www.incommon.org/participants/

116

What can I do in the SWAMP?

117

Create a Project

118

Create a Project

119

Create a Project

120

Packages

121

Upload your Software Package

122

Upload your Software Package

123

Upload your Software Package

124

Upload your Software Package

125

Upload your Software Package

126

Run your Assessments

127

Run your Assessments

128

Run your Assessments

129

The first time you try to use a commercial
tool you’ll get this message:

Run your Assessments

130

Run your Assessments

In addition to the SWAMP web interface you
can integrate SWAMP submissions into
your workflow:
•  IDE (Eclipse): Submission with a push of the SWAMP

button. View results directly in Eclipse code window.
•  CI (Jenkins): Submission with each build or

periodically. View results in the Jenkins dashboard.
•  Repositories (git/svn): Submission with each code

commit. View results in the SWAMP.

Plugins publicly available for each of these.

131

My Assessments

132

View your Results. SpotBugs - Native

133

View your Results. SpotBugs - CodeDx

134

https://codedx.com/Documentation/UserGuide.html

View your Results. SpotBugs - CodeDx

135

View your Results. SpotBugs - CodeDx

136

View your Results. SpotBugs - CodeDx

137

View your Results. Multiple Tools.

138

View your Results. Multiple Tools.

139

Interpret your Results
•  Go through the list of issues detected

by the tool.
–  In the OpenRedirect example the list is

short.
– But in real applications the list will be

long …

140

141

Interpret your Results
•  Try to address the most relevant first:

high priority, security related, …

Interpret your Results

142

Interpret your Results

•  Determine if it’s a real problem or a false
positive.

•  If it’s a true positive, fix the problem.
•  If it’s a false positive mark it so it won’t

be raised again when running again the
assessment.

•  Upload a new version of the Package, in
the same Project.

•  Run the assessment again.

143

Summary

•  The SWAMP allows easy access to multiple
automated tools for software assurance.

•  Every project has now access to a great suite of
tools for software assurance.

•  Scanning your software for weaknesses should
be part of the software development life cycle.

•  Assess your software periodically to prevent
code changes introduce new weaknesses.

•  If you are not comfortable uploading your
software, consider using SWAMP-in-a-Box.

144

145

Questions?

Barton P. Miller

bart@cs.wisc.edu

Elisa Heymann

Elisa.Heymann@uab.es

https://continuousassurance.org

http://www.cs.wisc.edu/mist/

